Normalization constant calculation
Description
Section titled “Description”Calculates the normalization constant for the metabolic scaling based on a known or estimated parameter value under at a reference temperature.
calculate_normalization_constant( parameter_value, scaling_exponent, mass, reference_temperature, E = NULL, k = 8.617333e-05, warn_if_possibly_false_input = getOption("metaRange.verbose", default = FALSE) > 0)
Arguments
Section titled “Arguments”parameter_value
:<numeric>
estimated parameter value at the reference temperature.scaling_exponent
:<numeric>
allometric scaling exponent of the mass.mass
:<numeric>
mean (individual) mass.reference_temperature
:<numeric>
reference temperature in kelvin (K).E
:<numeric>
Activation energy in electronvolts (eV).k
:<numeric>
Boltzmann’s constant (eV / K).warn_if_possibly_false_input
:<boolean>
Print a warning if the input is different from the known literature value combinations.
Details
Section titled “Details”Note the different scaling values for different parameter. The following is a summary from table 2 in Brown, Sibly and Kodric-Brown (2012) (see references).
Parameter | Scaling exponent | Activation energy |
resource usage | 3/4 | -0.65 |
reproduction, mortality | -1/4 | -0.65 |
carrying capacity | -3/4 | 0.65 |
References
Section titled “References”Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. and West, G.B. (2004) Toward a Metabolic Theory of Ecology. Ecology, 85 1771—1789. Brown, J.H., Sibly, R.M. and Kodric-Brown, A. (2012) Introduction: Metabolism as the Basis for a Theoretical Unification of Ecology. In Metabolic Ecology (eds R.M. Sibly, J.H. Brown and A. Kodric-Brown)
Seealso
Section titled “Seealso”metabolic_scaling()
The calculated normalization constant.
Examples
Section titled “Examples”calculate_normalization_constant( parameter_value = 1, scaling_exponent = -1 / 4, mass = 1, reference_temperature = 273.15, E = -0.65)